Ventral embryonic tissues and Hedgehog proteins induce early AGM hematopoietic stem cell development.
نویسندگان
چکیده
Hematopoiesis is initiated in several distinct tissues in the mouse conceptus. The aorta-gonad-mesonephros (AGM) region is of particular interest, as it autonomously generates the first adult type hematopoietic stem cells (HSCs). The ventral position of hematopoietic clusters closely associated with the aorta of most vertebrate embryos suggests a polarity in the specification of AGM HSCs. Since positional information plays an important role in the embryonic development of several tissue systems, we tested whether AGM HSC induction is influenced by the surrounding dorsal and ventral tissues. Our explant culture results at early and late embryonic day 10 show that ventral tissues induce and increase AGM HSC activity, whereas dorsal tissues decrease it. Chimeric explant cultures with genetically distinguishable AGM and ventral tissues show that the increase in HSC activity is not from ventral tissue-derived HSCs, precursors or primordial germ cells (as was previously suggested). Rather, it is due to instructive signaling from ventral tissues. Furthermore, we identify Hedgehog protein(s) as an HSC inducing signal.
منابع مشابه
BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo
Hematopoietic stem cells (HSC), the self-renewing cells of the adult blood differentiation hierarchy, are generated during embryonic stages. The first HSCs are produced in the aorta-gonad-mesonephros (AGM) region of the embryo through endothelial to a hematopoietic transition. BMP4 and Hedgehog affect their production and expansion, but it is unknown whether they act to affect the same HSCs. In...
متن کاملDevelopment of hematopoietic stem cell activity in the mouse embryo.
The precise time of appearance of the first hematopoietic stem cell activity in the developing mouse embryo is unknown. Recently the aorta-gonad-mesonephros region of the developing mouse embryo has been shown to possess hematopoietic colony-forming activity (CFU-S) in irradiated recipient mice. To determine whether the mouse embryo possesses definitive hematopoietic stem cell activity in the a...
متن کاملEmbryonic origin of the adult hematopoietic system: advances and questions.
Definitive hematopoietic stem cells (HSCs) lie at the foundation of the adult hematopoietic system and provide an organism throughout its life with all blood cell types. Several tissues demonstrate hematopoietic activity at early stages of embryonic development, but which tissue is the primary source of these important cells and what are the early embryonic ancestors of definitive HSCs? Here, w...
متن کاملDefinitive Hematopoiesis Is Autonomously Initiated by the AGM Region
The adult hematopoietic system of mammals is a dynamic hierarchy of cells with the hematopoietic stem cell at its foundation. During embryonic development, the source and expansion potential of this cell remain unclear. Two sites of hematopoietic activity, the yolk sac and aorta-gonad-mesonephros (AGM) region, function in mouse ontogeny at the pre-liver stage of hematopoiesis. However, cellular...
متن کاملEndothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells.
Hematopoietic stem cells (HSCs) first emerge during embryonic development within vessels such as the dorsal aorta of the aorta-gonad-mesonephros (AGM) region, suggesting that signals from the vascular microenvironment are critical for HSC development. Here, we demonstrated that AGM-derived endothelial cells (ECs) engineered to constitutively express AKT (AGM AKT-ECs) can provide an in vitro nic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 136 15 شماره
صفحات -
تاریخ انتشار 2009